A representation result for Gamma-limit of supremal functionals

Ariela Briani and Francesca Prinari
2003
Type de publication :
Article (revues avec comité de lecture)
Journal :
Journal of Nonlinear and Convex Analysis, vol. 2,, pp. 245-268
HAL :
hal-00975031
Résumé :
In this paper we prove a representation result for the weak L infinity Gamma-limit of a sequence of supremal functionals $F_n(u): =ess \: sup_{x \: in \: A} f_n(x,u(x))$ where A is a subset of $R^n$ and u a function in L infinity (from A to $R^N$). This Gamma-limit is still a supremal functional and we give an explicit formula to obtain it. The basic tools we use are the definition of level convexity and the related notion of duality introduced by Volle.
BibTeX :
@article{Bri-Pri-2003,
    author={Ariela Briani and Francesca Prinari },
    title={A representation result for Gamma-limit of supremal 
           functionals },
    journal={Journal of Nonlinear and Convex Analysis },
    year={2003 },
    volume={2, },
    pages={245--268},
}