Infinite dimensional stochastic calculus via regularization with financial perspectives
july, 2010
Publication type:
Doctoral these
Publisher:
Université Paris-Nord - Paris XIII
External link:
HAL:
Keywords :
Calculus via regularization; Infinite dimensional analysis; Fractional Brownian motion; Tensor analysis; Clark-Ocone formula; Dirichlet processes; Itô formula; Quadratic variation; Hedging theory without semimartingales.;
Abstract:
This thesis develops some aspects of stochastic calculus via regularization to Banach valued processes. An original concept of Chi-quadratic variation is introduced, where Chi is a subspace of the dual of a tensor product B⊗B where B is the values space of some process X process. Particular interest is devoted to the case when B is the space of real continuous functions defined on [-τ,0], τ>0. Itô formulae and stability of finite Chi-quadratic variation processes are established. Attention is deserved to a finite real quadratic variation (for instance Dirichlet, weak Dirichlet) process X. The C([-τ,0])-valued process X(•) defined by X_t(y) = X_{t+y}, where y ∈ [-τ,0], is called window process. Let T >0. If X is a finite quadratic variation process such that [X]_t = t and h = H(X_T(•)) where H:C([-T,0])→R is L^{2}([-T,0])-smooth or H non smooth but finitely based it is possible to represent h as a sum of a real H_0 plus a forward integral of type \int_0^T \xi d^-X where H_0 and \xi are explicitly given. This representation result will be strictly linked with a function u:[0,T]x C([-T,0])→R which in general solves an infinite dimensional partial differential equation with the property H_{0}=u(0, X_{0}(•)), \xi_t=Du(t, X_{t}(•))({0}). This decomposition generalizes important aspects of Clark-Ocone formula which is true when X is the standard Brownian motion W. The financial perspective of this work is related to hedging theory of path dependent options without semimartingales.
title (translation) :
Calcul stochastique via régularisation en dimension infinie avec perspectives financières
Keywords (translation) :
Calcul stochastique via régularisation; analyse infini-dimensionnelle; mouvement brownien fractionnaire; analyse tensorielle; formule de Clark-Ocone; processus de Dirichlet; formule d'Itô; variation quadratique; théorie de couverture d'options sans semimartingales.;
Abstract (translation) :
Ce document de thèse développe certains aspects du calcul stochastique via régularisation pour des processus X à valeurs dans un espace de Banach général B. Il introduit un concept original de Chi-variation quadratique, où Chi est un sous-espace du dual d'un produit tensioriel B⊗B, muni de la topologie projective. Une attention particulière est dévouée au cas où B est l'espace des fonctions continues sur [-τ,0], τ>0. Une classe de résultats de stabilité de classe C^1 pour des processus ayant une Chi-variation quadratique est établie ainsi que des formules d'Itô pour de tels processus. Un rôle significatif est joué par les processus réels à variation quadratique finie X (par exemple un processus de Dirichlet, faible Dirichlet). Le processus naturel à valeurs dans C[-τ,0] est le dénommé processus fenêtre X_t(•) où X_t(y) = X_{t+y}, y ∈ [-τ,0]. Soit T>0. Si X est un processus dont la variation quadratique vaut [X]_t = t et h = H(X_T(•)) où H:C([-T,0])→ R est une fonction de classe C^3 Fréchet par rapport à L^2([-T,0] ou H dépend d'un numéro fini d' intégrales de Wiener, il est possible de représenter h comme un nombre réel H_0 plus une intégrale progressive du type \int_0^T \xi d^-X où \xi est un processus donné explicitement. Ce résultat de répresentation de la variable aléatoire h sera lié strictement à une fonction u:[0,T] x C([-T,0])→R qui en général est une solution d'une equation au derivées partielles en dimension infinie ayant la proprieté H_0=u(0, X_0(•)), \xi_t=Du(t, X_t(•))({0}). A certains égards, ceci généralise la formule de Clark-Ocone valable lorsque X est un mouvement brownien standard W. Une des motivations vient de la théorie de la couverture d'options lorsque le prix de l'actif soujacent n'est pas une semimartingale.
BibTeX:
@phdthesis{DiG-2010, author={Cristina Di Girolami }, title={Infinite dimensional stochastic calculus via regularization with financial perspectives }, address={Université Paris-Nord - Paris XIII }, year={2010 }, month={7}, }