Exact boundary conditions for periodic waveguides containing a local perturbation

2006
Type de publication :
Article (revues avec comité de lecture)
Journal :
Communications in Computational Physics, vol. 1(6), pp. 945-973
HAL :
hal-00977852
Résumé :
We consider the solution of the Helmholtz equation $-\Delta u({\bf x}) - n({\bf x})^2\omega^2 u({\bf x}) = f({\bf x})$, ${\bf x}=(x,y)$, in a domain $\Omega$ which is infinite in $x$ and bounded in $y$. We assume that $f({\bf x})$ is supported in $\Omega^0:={{\bf x}\in {\Omega} \; | a^-
BibTeX :
@article{Jol-Li-Fli-2006,
    author={Patrick Joly and Jing-Rebecca Li and Sonia Fliss },
    title={Exact boundary conditions for periodic waveguides containing a 
           local perturbation },
    journal={Communications in Computational Physics },
    year={2006 },
    volume={1(6) },
    pages={945--973},
}