Another approach to linearized elasticity and Korn's inequality
2004
Publication type:
Paper in peer-reviewed journals
Journal:
Comptes Rendus Mathematique, vol. 339(4), pp. 307-312
HAL:
Abstract:
We describe and analyze an approach to the pure traction problem of three-dimensional linearized elasticity, whose novelty consists in considering the linearized strain tensor as the ‘primary’ unknown, instead of the displacement itself as is customary. This approach leads to a well-posed minimization problem, constrained by a weak form of the St Venant compatibility conditions. It also provides a new proof of Korn's inequality.
BibTeX:
@article{Cia-Cia-2004, author={Patrick Ciarlet and Philippe G. Ciarlet }, title={Another approach to linearized elasticity and Korn's inequality }, doi={10.1016/j.crma.2004.06.021 }, journal={Comptes Rendus Mathematique }, year={2004 }, volume={339(4) }, pages={307--312}, }