Numerical Microlocal analysis of 2-D noisy harmonic plane and circular waves

2013
Type de publication :
Article (revues avec comité de lecture)
Journal :
Asymptotic Analysis, vol. 83, pp. 157-187
Editeur :
IOS Press
HAL :
hal-00937691
Mots clés :
plane waves, point source, inverse scattering
Résumé :
We present a mathematical and numerical analysis of the stability and accuracy of the NMLA (Numerical MicroLocal Analysis) method and its discretization. We restrict to homogeneous space and focus on the two simplest cases : 1) Noisy plane wave packets, 2) Noisy point source solutions. A stability result is obtained through the introduction of a new ”impedance” observable. The analysis of the point source case leads to a modified second order (curvature dependent) correction of the algorithm. Since NMLA is local, this second order improved version can be applied to general data (heterogeneous media).
BibTeX :
@article{Ben-Col-Mar-2013,
    author={Jean-David Benamou and Francis Collino and Simon Marmorat },
    title={Numerical Microlocal analysis of 2-D noisy harmonic plane and 
           circular waves },
    doi={10.3233/ASY-121157 },
    journal={Asymptotic Analysis },
    year={2013 },
    volume={83 },
    pages={157--187},
}